Symbolics > Working with Symbolics > Calculus > Example: Symbolic Integral Functions
  
Example: Symbolic Integral Functions
Use the keyword float to evaluate functions that can only be evaluated with the symbolic equal sign, and not with the numerical equal sign.
Ei: Exponential Integral
1. Use the keyword float to evaluate function Ei numerically at x=2:
Click to copy this expression
2. Evaluate the complex exponential integral function for a real number x:
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
3. Use function clear to clear the previous numeric and symbolic value of x:
Click to copy this expression
4. Verify that the following integrals return answers in terms of the exponential integral function:
Click to copy this expression
Click to copy this expression
Click to copy this expression
Click to copy this expression
Ci: Cosine Integral
1. Use the keyword float to evaluate function Ci at x=1:
Click to copy this expression
2. Verify that the following integrals return answers in terms of the cosine integral function:
Click to copy this expression
Click to copy this expression
Si: Sine Integral
1. Use the keyword float to evaluate function Si at x=2:
Click to copy this expression
2. Verify that the following integrals return answers in terms of the sine integral function:
Click to copy this expression
Click to copy this expression
FresnelC: Fresnel Cosine Integral
1. Use the keyword float to evaluate function FresnelC at x=2:
Click to copy this expression
2. Verify that the following integral returns an answer in terms of the Fresnel cosine integral function:
Click to copy this expression
FresnelS: Fresnel Sine Integral
1. Use the keyword float to evaluate function FresnelS at x=2:
Click to copy this expression
2. Verify that the following integral returns a result in terms of the Fresnel sine and Fresnel cosine integrals:
Click to copy this expression